最新资讯

17. Production of Biodegradable Board using Rape Straw and Analysis of  Mechanical Properties
17. Production of Biodegradable Board using Rape Straw and Analysis of Mechanical Properties
This study investigated the glueless preparation of biomass board using rape straw on a laboratory scale. The board-making process was broken down into four steps: soaking, refining, shape recovery, and hot-pressing. To observe the effect of pressure during the hot-press stage on the strength of the bio-board, five panels were manufactured at various pressures. Moreover, density functional theory (DFT) was used to explore how varying the pressure influenced the strength properties of the board. As pressure increased, the density of these five panels changed from 0.95 to 1.12 g/cm(3). The mechanical tests showed that the bending rupture strength of these panels changed from 43 to 53 MPa, while the tensile rupture strength changed from 27 to 33 MPa. The bending strength of these biomass boards performed well enough to qualify them as Type-35 board, and their density classified them as hardboard, according to the Japanese industrial standards (JIS). This study showed that board-making was
2024-04-23
16. Mechanism of Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes with a Nitrite Co-Catalyst
16. Mechanism of Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes with a Nitrite Co-Catalyst
Traditional Wacker-type oxidations of unbiased alkenes produce ketones as major products. Recently, Grubbs’ group reported a Wacker-type oxidation system in which aldehydes (rather than ketones) have been generated predominantly in the presence of a nitrite co-catalyst. To elucidate the mechanistic origin of the aldehyde selectivity, density functional theory (DFT) studies have been conducted in this study. Two oxymetalation pathways, i.e., syn addition and anti addition pathways, were considered for various possible active species including monomeric Pd, bimetallic Pd−Pd, heterobimetallic Pd−Cu, and heterobimetallic Pd−Ag complexes. It is found that syn addition is kinetically more favored than anti addition in general. Meanwhile, the most feasible oxymetalation processes occur on the heterobimetallic Pd−Cu complexes. Investigations on the subsequent aldehyde formation process show that 1,2-H shift mechanism on tBuOH-ligated Pd−Cu complexes is superior to the betaH-elimination mechani
2024-04-23
15. Redox potentials of trifluoromethyl-containing compounds
15. Redox potentials of trifluoromethyl-containing compounds
Trifluoromethylation reactions are important transformations in the research and development of drugs, agrochemicals and functional materials. An oxidation/reduction process of trifluoromethyl-containing compounds is thought to be involved in many recently tested catalytic trifluoromethylation reactions. To provide helpful physical chemical data for mechanistic studies on trifluoromethylation reactions, the redox potentials of a variety of trifluoromethyl-containing compounds and trifluoromethylated radicals were studied by quantum-chemical methods. First, wB97X-D was found to be a reliable method in predicting the ionization potentials, electron affinities, bond dissociation enthalpies and redox potentials of trifluoromethylcontaining compounds. One-electron absolute redox potentials of 79 trifluoromethyl substrates and 107 trifluoromethylated radicals in acetonitrile were then calculated with this method. The theoretical results were found to be helpful for interpreting experimental
2024-04-23
14. Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes
14. Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes
Density functional theory (DFT) method was used to explore the origin of the regioselectivity of Cocatalyzed hydroacylation of 1,3-dienes. The reaction of 2-methyl-1,3-butadiene and benzaldehyde with 1,3-bis(diphenylphosphino)propane ligand was chosen as the model reaction. The energies of the intermediates and transition states in the stages of oxidative cyclization, b-H elimination and C-H reductive elimination were investigated. Computational results show that b-H elimination is the ratedetermining step for the whole catalytic cycle. C1-Selective oxidative cyclization is favored over C4- selective oxidative cyclization. Besides, C4-selective oxidative cyclization is kinetically disfavored than all the steps in C1-hydroacylation mechanisms, consistent with the experimentally obtained C1- selective hydroacylation products. Analyzing the reason for such observation, we suggest that both electronic and steric effects contribute to the C1-selectivity. On the electronic aspect, C1 is more
2024-04-23

最新资讯

93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14

最新资讯

93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1