最新资讯

34. Theoretical study of the Cl-initiated atmospheric oxidation of methyl isopropenyl ketone
34. Theoretical study of the Cl-initiated atmospheric oxidation of methyl isopropenyl ketone
The Cl-initiated atmospheric oxidation mechanism of methyl isopropenyl ketone (MIK) has been investigated at the CCSD(T)/6-311++G(d,p)//MP2/6-311G(d,p) level of theory. Two reaction types initiated from Cl-addition and H-abstraction, respectively, and the key intermediates involved, IM1, IM2 (obtained from Cl-addition) and IM6 (obtained from H-abstraction), are presented and discussed. The calculated results supported the experimental results that Cl addition dominates the initial reactions of MIK with Cl atoms, and the most energetically favorable pathway is the Cl addition to the terminal carbon of C]C bond. Among the four proposed H abstraction processes, our study clearly indicated that the H-abstraction by Cl only takes place at the methyl linking to the internal alkenfinic carbon rather than the one at the methyl linking to the carbonyl carbon, which resolves the uncertainty of Habstraction encountered in experiment. In addition, the isomerization processes involved in the Cl add
2024-04-23
33. Arylboronate Ester Protected Amino Acids as Orthogonal Building Blocks for  Fmoc Solid‐Phase Peptide Synthesis
33. Arylboronate Ester Protected Amino Acids as Orthogonal Building Blocks for Fmoc Solid‐Phase Peptide Synthesis
Three new arylboronate ester protected amino acids and their on-resin deprotection methods have been developed. These useful building blocks were found to exhibit favorable chemical properties that are fully compatible with Fmoc strategy solid-phase peptide synthesis. Furthermore, the formation of over-oxidation side-product methionine was minimized by using N-methyl-N-phenylaniline N-oxide as the oxidizing reagent. Effective application of the three new amino acids for the synthesis of different types of peptidomimetics has been demonstrated by high-quality preparation of lipidated peptide MP-196 C-C8, on-resin head-to-tail cyclization of desotamide B, and lactam bridging of hPTHrP-(11–19) through a facile and metal-free procedure by standard Fmoc solid-phase peptide synthesis.
2024-04-23
32. Mechanism and Origin of Chemical Selectivity in Oxaziridine-Based Methionine Modification:  A Computational Study
32. Mechanism and Origin of Chemical Selectivity in Oxaziridine-Based Methionine Modification: A Computational Study
Oxaziridine-based redox sulfur imidation provides a breakthrough strategy for selective modification at methionine in proteins. The chemoselectivity of imidization (N-transfer) over oxidation (O-transfer) of the thioether functionality of methionine, and the modification selectivity of methionine over other amino acids, are the key features of this strategy. To elucidate the detailed reaction mechanism and the origin of the reported chemoselectivity, a theoretical investigation on the oxaziridine-based methionine modification reaction is reported. It is found that both the N-transfer and O-transfer pathways occur in a concerted mechanism. Distortion/interaction−activation strain model analysis indicates that the N-transfer chemoselectivity is mainly controlled by the interaction energy. Orbital and charge analysis further supports that the interaction energy resulting from the orbital interaction favors the N-transfer pathway at the early stage of the reaction. The calculated reactivit
2024-04-23
31. Mechanistic Study on Platinum-Catalyzed Domino Reaction of Benziodoxole and Pyrrole Homopropargylic  Ethers for Indole Synthesis
31. Mechanistic Study on Platinum-Catalyzed Domino Reaction of Benziodoxole and Pyrrole Homopropargylic Ethers for Indole Synthesis
Benzene ring functionalization provides useful alternatives to access indole derivatives and has received much attention in recent years. In this work, the mechanism of Pt(II)-catalyzed cyclization/alkynylation of benziodoxole with pyrrole homopropargylic ethers to generate C5-alkenylated indole derivatives has been studied with the aid of density functional theory (DFT) calculations. We found that fivemembered-ring cyclization/six-membered-ring cyclization is competitive in the formation of an indole skeleton. The following aromatization stage prefers the reaction sequence bicarbonate-assisted deprotonation at the C3a position, H2CO3-promoted methoxy elimination at the C7 position, and bicarbonate-assisted deprotonation at the C6 position. In the last alkynylation stage, the oxidative substitution mechanism assisted by H2CO3 is found to be favored over the previously proposed 1,2-iodo shift and oxidative addition. The overall ratedetermining step is oxidative substitution. Additionall
2024-04-23

最新资讯

94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07

最新资讯

94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1