最新资讯

29.  Mechanism of Pd-catalyzed acylation/alkenylation of aryl iodide: a DFT study
29. Mechanism of Pd-catalyzed acylation/alkenylation of aryl iodide: a DFT study
The Pd-catalyzed cross-coupling of aryl iodide, benzoic anhydride and ethyl acrylate provided a useful alternative to synthesize alkenylated aryl ketones with good selectivity and functional-group tolerance. In this manuscript, density functional theory (DFT) calculations were performed to address the detailed reaction mechanism. Computational results support the experimentally proposed Pd(0)–Pd(II)–Pd(IV) catalytic cycle and further clarify that the rate-determining step is the oxidative addition of benzoic anhydride, the regioselectivity-determining step is the migratory insertion of ethyl acrylate and the following β-H elimination determines the stereoselectivity. The regioselectivity can be attributed to the steric and electronic effect of ethyl acrylate and the stereoselectivity can be explained by the steric repulsion between the toluene moiety and the CO2Et moiety. Furthermore, we found that norbornene not only acts as the removable scaffold in Catellani–Lautens type reactions,
2024-04-23
28. Mechanism of trifluoroacetic-acid-promoted N-to-S acyl transfer of enamides
28. Mechanism of trifluoroacetic-acid-promoted N-to-S acyl transfer of enamides
An enamide-based 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis (SPPS) method was recently disclosed for the synthesis of peptide thioesters. In this manuscript, density functional theory (DFT) calculations were performed to provide deeper mechanistic insights into this reaction. The calculation results clarified the detailed mechanisms of the relevant N-to-S acyl transfer and hydrolysis, the overall rate-determining step, the role of trifluoroacetic acid (TFA), as well as the influence of the stereo-configuration of amide bond and C]C bond on reaction rate.
2024-04-23
27. Mechanism and Origin of Et2Al(OEt)-Induced Chemoselectivity of Nickel-Catalyzed  Three-Component Coupling of One Diketene and Two Alkynes
27. Mechanism and Origin of Et2Al(OEt)-Induced Chemoselectivity of Nickel-Catalyzed Three-Component Coupling of One Diketene and Two Alkynes
Density functional theory (DFT) calculations have been performed to unravel the mechanism of Lewis-acid-induced Ni(cod)2-catalyzed selective coupling reactions of one diketene and two alkynes. Complex mixtures (unsymmetrical phenylacetic acid P1, symmetrical phenylacetic acid P2 and (3E)-4-ethyl-5-methylene-3- heptenoic acid P3) were obtained in the absence of Et2Al(OEt). P1 formation involves C(sp2)-O oxidative addition of diketene, twice alkyne insertion, intramolecular C=C insertion, acidolysis, and β-H elimination. For P2/P3 formation, the common key issue related to the C=C double bond cleavage of the substrate diketene was explored and found that it was accomplished via a four-membered-ring-closure/ four-membered-ring-opening process. And then, P2 was produced via the second alkyne insertion while P3 was accessed by a stoichiometric reaction with HCl. The Et2Al(OEt)-induced chemoselectivity was also probed. It is found that the Ni−O (from Al reagent) bonding facilitates the secon
2024-04-23
26. A Ligand-Dissociation-Involved Mechanism in Amide Formation of  Monofluoroacylboronates with Hydroxylamines
26. A Ligand-Dissociation-Involved Mechanism in Amide Formation of Monofluoroacylboronates with Hydroxylamines
Acylborons, as a growing class of boron reagents, were successfully applied to amide ligation and showed potential in chemoselective bioconjugation reactions in recent years. In this manuscript, a density functional theory (DFT) study was performed to investigate the mechanism of the amide formation between monofluoroacylboronates and hydroxylamines. An updated pathway was clarified herein, including water-assisted hemiaminal formation, pyridine ligand dissociation, elimination via a six-membered-ring transition state, and water-assisted tautomerization. The proposed mechanism was further examined by applying it to investigate the activation barriers of other monofluoroacylboronates, and the related calculations well reproduced the experimentally reported relative reactivities. On the basis of these results, we found that the ortho substitution of the pyridine ligand destabilizes the acylboron substrates and the hemiaminal intermediates by steric effects and thus lowers the energy dema
2024-04-23

最新资讯

93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14

最新资讯

93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1