5. Theoretical Study on the Mechanism of Ni‐Catalyzed Alkyl–Alkyl Suzuki Cross‐Coupling
Ni-catalyzed cross-coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 (L1=trans-N,N’-dimethyl-1,2-cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI(L1)X] (X=Cl, Br) with 9-borabicycloACHTUNGTRENUNG[3.3.1]nonane (9-BBN)R1 to produce [NiI(L1)(R1)], oxidative addition of R2X with [NiI(L1)(R1)] to produce [NiIII(L1)(R1)(R2)X] through a radical pathway, and CC reductive elimination to generate the product and [NiI(L1)X]. The transmetalation step is rate-determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of re
2024-04-23