最新资讯

9. Mechanistic Study of Borylation of Nitriles Catalyzed by Rh–B and Ir–B Complexes via C–CN Bond Activation
9. Mechanistic Study of Borylation of Nitriles Catalyzed by Rh–B and Ir–B Complexes via C–CN Bond Activation
Recently the Chatani group reported the Rh(I)-catalyzed borylation of nitriles, which provided an efficient protocol for transformation of the C−CN bond to the C−B bond (J. Am. Chem. Soc. 2012, 134, 115). Although an unconventional β- carbon elimination mechanism was proposed in their study, the other previously proposed mechanisms, i.e., oxidative addition, deinsertion, and initial C−H bond activation, cannot be excluded. To clarify the dominant mechanism of this reaction, a density functional theory study on borylation of PhCN and BnCN catalyzed by [Rh(XantPhos)(B(nep))] (nep = neopentylglycolate, XantPhos = 4,5-Bis- (diphenylphosphino)-9,9-dimethylxanthene) was conducted. The computational results indicated that the deinsertion mechanism (2,1-insertion of the Rh−B bond into the C−N bond occurs first, followed by the insertion of the metal center into C−CN bond) is favored over oxidative addition, β-carbon elimination, and the initial C−H bond activation mechanism within all the inve
2024-04-23
8. Theoretical Study on Thermodynamic Properties of Pyrolysis of Cellulose Dimer Model Compound
8. Theoretical Study on Thermodynamic Properties of Pyrolysis of Cellulose Dimer Model Compound
Cellulose is an important material for production of biofuel and refined chemicals. Pyrolysis is one of the most promising approaches for cellulose de-polymerization. Understanding the mechanism of cellulose pyrolysis is essential for development of efficient biomass conversion technologies. In this study, the thermodynamic energy change of cellulose pyrolysis through homolytic bond cleavage was studied with the aid of density functional theory method by using cellulose dimer as a model compound. The free energy changes of various homolytic bond dissociation of cellulose dimer were studied by the method of M06-2x at the temperature of 800 ℃ . To compare with experiment results of cellulose pyrolysis reported recently by Huber et al., the free energy changes of reaction pathways studied by Auerbach group via Car-Parrinello molecular dynamics calculations were also studied. Calculated results show that the free energy changes of homolytic dissociation of glucosidic bond varies in the ran
2024-04-23
7. Mechanistic Origin of Regioselectivity in Nickel-Catalyzed Olefin Hydroheteroarylation through C–H Activation
7. Mechanistic Origin of Regioselectivity in Nickel-Catalyzed Olefin Hydroheteroarylation through C–H Activation
Ni-catalyzed addition of electron-deficient arenes and heteroarenes to olefin substrates through C−H activation provides an important method for the synthesis of diarylalkanes. This reaction usually generates Markovnikov adducts for aryl olefins, whereas anti-Markovnikov adducts are obtained for alkyl-substituted alkenes. To understand the mechanistic origin of this interesting regioselectivity, we conducted density functional theory calculations using the reactions of benzoxazole with styrene and 1-hexene as models. The calculation results are consistent with experimental observations, showing that the reaction proceeds through a mechanism involving Ar−H oxidative addition, hydronickelation, and C−C reductive elimination. Further calculations indicate that a better antiMarkovnikov regioselectivity can be obtained for olefins substituted with more bulky alkyl groups, whereas a better Markovnikov regioselectivity can be achieved for more electron-deficient para-substituted styrenes. Fur
2024-04-23
6. Mechanism of palladium-catalyzed decarboxylative cross-coupling between cyanoacetate salts and aryl halides
6. Mechanism of palladium-catalyzed decarboxylative cross-coupling between cyanoacetate salts and aryl halides
Recently we reported Pd-catalyzed decarboxylative cross-coupling of cyanoacetate salts with aryl halides and triflates. This reaction shows good functional group tolerance and is useful for the synthesis of -aryl nitriles. To elucidate the mechanism for this reaction, we now carry out a density functional theory study on the cross-coupling of potassium cyanoacetate with bromobenzene. Our results show that the decarboxylation transition state involving the interaction of Pd with the -carbon atom has a very high energy barrier of +34.5 kcal/mol and therefore, must be excluded. Decarboxylation of free ion (or tight-ion-pair) also causes a high energy increase and should be ruled out. Thus the most favored decarboxylation mechanism corresponds to a transition state in which Pd interacts with the cyano nitrogen. The energy profile of the whole catalytic cycle shows that decarboxylation is the rate-determining step. The total energy barrier is +27.5 kcal/mol, which is comprised of two part
2024-04-23

最新资讯

93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14

最新资讯

93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1