最新资讯

92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
DFT calculations are carried out to investigate the hydroacylation mechanism based on copper-catalyzed A3- coupling tandem reaction of terminal alkynes, aldehydes and amines. The study reveals significant mechanistic differences between copper(I) and copper(II) catalysts. In the Cu(II)-catalyzed system, incorporation of a ligand is deemed necessary for facilitating reactivity, whereas no ancillary ligand is required in Cu(I) system. The ligand, through coordination with the Cu(II) center, stabilizes the key transition states and intermediates, resulting in a substantial reduction in the activation barrier. The ligand exhibits varying effect, with the order of activity being piperidine > pyridine > DMSO, correlating positively with the interaction energy between ligand and Cu complex. Additionally, the study sheds light on the pivotal roles played by the catalyst, ligand, base, and solvent DMSO in the reaction.
2024-09-14

最新资讯

92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
DFT calculations are carried out to investigate the hydroacylation mechanism based on copper-catalyzed A3- coupling tandem reaction of terminal alkynes, aldehydes and amines. The study reveals significant mechanistic differences between copper(I) and copper(II) catalysts. In the Cu(II)-catalyzed system, incorporation of a ligand is deemed necessary for facilitating reactivity, whereas no ancillary ligand is required in Cu(I) system. The ligand, through coordination with the Cu(II) center, stabilizes the key transition states and intermediates, resulting in a substantial reduction in the activation barrier. The ligand exhibits varying effect, with the order of activity being piperidine > pyridine > DMSO, correlating positively with the interaction energy between ligand and Cu complex. Additionally, the study sheds light on the pivotal roles played by the catalyst, ligand, base, and solvent DMSO in the reaction.
2024-09-14

最新资讯

92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
DFT calculations are carried out to investigate the hydroacylation mechanism based on copper-catalyzed A3- coupling tandem reaction of terminal alkynes, aldehydes and amines. The study reveals significant mechanistic differences between copper(I) and copper(II) catalysts. In the Cu(II)-catalyzed system, incorporation of a ligand is deemed necessary for facilitating reactivity, whereas no ancillary ligand is required in Cu(I) system. The ligand, through coordination with the Cu(II) center, stabilizes the key transition states and intermediates, resulting in a substantial reduction in the activation barrier. The ligand exhibits varying effect, with the order of activity being piperidine > pyridine > DMSO, correlating positively with the interaction energy between ligand and Cu complex. Additionally, the study sheds light on the pivotal roles played by the catalyst, ligand, base, and solvent DMSO in the reaction.
2024-09-14
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1