最新资讯

82. Theoretical study on Pd(0)-catalyzed remote C(sp3)-H functionalization via 1,5-Pd migration
82. Theoretical study on Pd(0)-catalyzed remote C(sp3)-H functionalization via 1,5-Pd migration
The remote C(sp3)-H activation/functionalization via 1,5-Pd migration involved in the Pd(0)-catalyzed reaction of (8-bromonaphthalen-1-yl)trimethylsilane (S1) and N-tosylhydrazone (S2) was theoretically investigated with the aid of the density functional theory calculations. The role of the Lewis base LiOtBu was revealed by forming a Pd-O bond to participate in the reaction. The remote C(sp3)-H activation was found to be accomplished by concerted Pd-C(sp2)/C(sp3)-H σ-bond metathesis rather than by stepwise C(sp3)-H oxidative addition/C(sp2)-H reductive elimination. Additionally, the mechanism of generating 2-diazopropane from N-tosylhydrazone (S2) was investigated. This study would be informative and benefit to designing novel relevant transition-metalcatalyzed remote C-H activation/functionalization reactions.
2024-04-23
81. Mechanistic Insights Into the Rhodium-Catalyzed C−H Alkenylation/ Directing Group Migration and [3+2] Annulation: A DFT Study
81. Mechanistic Insights Into the Rhodium-Catalyzed C−H Alkenylation/ Directing Group Migration and [3+2] Annulation: A DFT Study
The mechanism of the rhodium-catalyzed C−H alkenylation/directing group migration and [3+2] annulation of Naminocarbonylindoles with 1,3-diynes has been investigated with DFT calculations. On the basis of mechanistic studies, we mainly focus on the regioselectivity of 1,3-diyne inserting into the Rh−C bond and the N-aminocarbonyl directing group migration involved in the reactions. Our theoretical study uncovers that the directing group migration undergoes a stepwise β-N elimination and isocyanate reinsertion process. As studied in this work, this finding is also applicable to other relevant reactions. Additionally, the role of Na+ versus Cs+ involved in the [3+2] cyclization reaction is also probed.
2024-04-23
80. Computation Study on Copper-Catalyzed Aerobic Intramolecular Aminooxygenative C=C Bond Cleavage to Imides: Different Roles of Mononuclear and Dinuclear Copper Complexes
80. Computation Study on Copper-Catalyzed Aerobic Intramolecular Aminooxygenative C=C Bond Cleavage to Imides: Different Roles of Mononuclear and Dinuclear Copper Complexes
Cu-catalyzed aerobic reactions are a powerful protocol for the synthesis of value-added chemicals based on the ideal oxidant O2. Despite the long research history, the mechanistic studies clarifying the details of the whole catalytic cycle, where CuO2 complexes and their derivatives directly participate in the conversion of substrates, are limited, leaving the mechanisms of emerging aerobic reactions far from understanding. Herein, a computational study on the mechanism of Cu-catalyzed aerobic aminooxygenation of alkene-tethered amides to imides is reported. It is found that the Cu(I) precursor is not the active species but can generate two types of Cu(II) complexes LCu(OAc)OH and LCu(OAc)OOR to start the aminooxygenation through the successive formation of dinuclear Cu(III) oxo complex, dinuclear Cu(II) hydroxide complex, and hetero-dinuclear Cu(II)-Cu(I) complex, followed by alkylperoxo radical capture with Cu(I) species. LCu(OAc)OH catalyzes the aminooxygenation via a mononuclear me
2024-04-23
79. Nitrogen-Doped Carbon for Selective Pseudo-Metal-Free Hydrodeoxygenation of 5-Hydroxymethylfurfural  to 2,5-Dimethylfuran: Importance of Trace Iron Impurity.
79. Nitrogen-Doped Carbon for Selective Pseudo-Metal-Free Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran: Importance of Trace Iron Impurity.
Heteroatoms-doped carbon materials have recently emerged as effective catalysts for various chemical and electrochemical reactions. The free of metals especially noble metals reduces cost and eliminates issues like sintering or leaching of metals at elevated temperatures in solvents. In this work, selective hydrodeoxygenation (HDO) of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) is for the first time achieved over simple nitrogen-doped carbon (N-C) catalysts. At optimal reaction conditions, a 91% yield of DMF is obtained with excellent catalyst stability. Extensive characterization, including extended X-ray absorption fine-structure (EXAFS) and soft X-ray absorption spectroscopy (sXAS), model reactions, basic data science analysis, and DFT calculations suggest that ppm of Fe in particular FeN3 sites formed in pyrolysis, rather than non-metallic elements, drive key steps such as H2 activation and deoxygenation of –OH during HMF HDO.
2024-04-23

最新资讯

94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07

最新资讯

94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1