最新资讯

48. Mechanism and Origin of Stereoselectivity of Pd-Catalyzed Cascade Annulation of Aryl Halide,  Alkene, and Carbon Monoxide via C–H Activation
48. Mechanism and Origin of Stereoselectivity of Pd-Catalyzed Cascade Annulation of Aryl Halide, Alkene, and Carbon Monoxide via C–H Activation
The combination of carbon monoxide with palladium chemistry has been demonstrated to be a promising tool for the synthesis of carbonyl compounds, and relative mechanistic studies are desirable to take this field one step further. In this manuscript, density functional theory calculations were performed to investigate the mechanism and origin of stereoselectivity of Pd-catalyzed cascade annulation of aryl iodide, alkene, and carbon monoxide to access the core of cephanolides B and C. It was found that the favorable mechanism proceeds via oxidative addition of Ar−I bond, migratory insertion of the CC bond, CO insertion into the Pd−(sp3) bond, Ar−H activation, and C(sp2)− C(sp2) reductive elimination. The Ar−H activation is the ratedetermining step and goes through an I-assisted outer-sphere concerted metalation−deprotonation mechanism. The CC bond insertion is irreversible and controls the stereoselectivity. In contrast, other two pathways involving the direct Ar−H activation after the
2024-04-23
47. C–H Acidity and Arene Nucleophilicity as Orthogonal  Control of Chemoselectivity in Dual C–H Bond Activation
47. C–H Acidity and Arene Nucleophilicity as Orthogonal Control of Chemoselectivity in Dual C–H Bond Activation
We discovered a cooperative gold/silver catalysis mechanism in the oxidative cross-coupling reaction between 1,2,4,5-tetrafluorobenzene and N-TIPS-indole, using DFT calculations. A silver(I)- catalyzed CMD mechanism is responsible for the C−H activation of 1,2,4,5-tetrafluorobenzene, and C−H acidity determines the chemoselectivity. A gold(III)-catalyzed SE2Ar mechanism is responsible for the C3−H activation of N-TIPS-indole, and arene nucleophilicity determines the chemo- and regioselectivity. The orthogonal chemoselectivity control provides a mechanistic guide for dual C−H activation reactions.
2024-04-23
46. Mechanism of Cu-Catalyzed Aerobic C(CO)–CH3 Bond Cleavage:  A Combined Computational and Experimental Study
46. Mechanism of Cu-Catalyzed Aerobic C(CO)–CH3 Bond Cleavage: A Combined Computational and Experimental Study
Cu-catalyzed aerobic C(CO)−CH3 activation of (hetero)aryl methyl ketones provides a rare tool for aldehyde formation from ketones through oxidative processes. To elucidate the detailed reaction mechanism, a combined computational and experimental study was performed. Computational study indicates a dinuclear Cu-catalyzed spin-crossover-involved mechanism explains the aldehyde formation. Meanwhile, α-mono(hydroxy)- acetophenone int1 was found to be the real active intermediate for the formation of benzaldehyde pro1 from acetophenone sub1. sub1 transforms into int1 via oxygen activation and ratedetermining Cα−H activation. The resulting dinuclear Cu complex regenerates the active Cu(I) complex through spin-crossoverinvolved disproportionation and retro oxygen activation. int1 further generates pro1 via oxygen activation, O−H activation, iodide atom transfer, 1,2-H shift, ligand rotation, spin crossover, and nucleophilic substitution. By comparison, the previously proposed reaction route
2024-04-23
45. Theoretical study on the intramolecular oxyamination involved in Rh(III)-catalyzed cyclization  of unsaturated alkoxyamines
45. Theoretical study on the intramolecular oxyamination involved in Rh(III)-catalyzed cyclization of unsaturated alkoxyamines
The unexpected oxyamination reaction of O, u-unsaturated alkoxyamines was found experimentally. The mechanistic issues were studied by DFT calculations. It is suggested that the reaction undergoes [3 þ 2] cyclic addition, OeN bond cleavage, CeN reductive elimination, and the RheN unit protonation, generating the product and regenerating the active catalyst. The nitrene Rh(V) species containing a RheC bond rather than a RheO bond was suggested to be involved in the reaction mechanism. Why the substrate A with X ¼ O but not X ¼ C undergoes oxyamination reaction was rationalized based on the suggested reaction mechanism.
2024-04-23

最新资讯

96. Non-C1 Synthon Role of CO2: Promoting Divergent Electrochemical Defluorination
96. Non-C1 Synthon Role of CO2: Promoting Divergent Electrochemical Defluorination
Here, an unpresented non-C1 synthon function of CO2 is reported to facilitate electrochemical defluorination. The introduction of CO2 modulates the electron distribution of the radical anion intermediate generated through one-electron reduction, thereby weakening the reduction potential and facilitating reduction and defluorination. CO2 is released subsequently via spontaneous decarboxylation to complete its promotion role. The presented results shed light on a distinctive utilization of CO2, which may stimulate interest in developing non-C1 synthon functions of CO2.
2025-06-13
95. Transition-Metal-Free Mild and Regioselective Alkylation of Quinoline N-Oxides with Benzylboronates
95. Transition-Metal-Free Mild and Regioselective Alkylation of Quinoline N-Oxides with Benzylboronates
A KOtBu-mediated C2-benzylation of quinoline N-oxides with benzylboronates under mild reaction conditions has been developed. The reaction shows broad scope for both of the quinoline N-oxides and benzylboronates, especially, secondary and tertiary benzylboronates are also compatible with this reaction. DFT calculations indicate that the reaction is promoted by the nucleophilic addition of KOtBu to boronate rather than the deprotonation of benzylic C−H bond with KOtBu.
2025-06-13
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23

最新资讯

96. Non-C1 Synthon Role of CO2: Promoting Divergent Electrochemical Defluorination
96. Non-C1 Synthon Role of CO2: Promoting Divergent Electrochemical Defluorination
Here, an unpresented non-C1 synthon function of CO2 is reported to facilitate electrochemical defluorination. The introduction of CO2 modulates the electron distribution of the radical anion intermediate generated through one-electron reduction, thereby weakening the reduction potential and facilitating reduction and defluorination. CO2 is released subsequently via spontaneous decarboxylation to complete its promotion role. The presented results shed light on a distinctive utilization of CO2, which may stimulate interest in developing non-C1 synthon functions of CO2.
2025-06-13
95. Transition-Metal-Free Mild and Regioselective Alkylation of Quinoline N-Oxides with Benzylboronates
95. Transition-Metal-Free Mild and Regioselective Alkylation of Quinoline N-Oxides with Benzylboronates
A KOtBu-mediated C2-benzylation of quinoline N-oxides with benzylboronates under mild reaction conditions has been developed. The reaction shows broad scope for both of the quinoline N-oxides and benzylboronates, especially, secondary and tertiary benzylboronates are also compatible with this reaction. DFT calculations indicate that the reaction is promoted by the nucleophilic addition of KOtBu to boronate rather than the deprotonation of benzylic C−H bond with KOtBu.
2025-06-13
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1