最新资讯

46. Mechanism of Cu-Catalyzed Aerobic C(CO)–CH3 Bond Cleavage:  A Combined Computational and Experimental Study
46. Mechanism of Cu-Catalyzed Aerobic C(CO)–CH3 Bond Cleavage: A Combined Computational and Experimental Study
Cu-catalyzed aerobic C(CO)−CH3 activation of (hetero)aryl methyl ketones provides a rare tool for aldehyde formation from ketones through oxidative processes. To elucidate the detailed reaction mechanism, a combined computational and experimental study was performed. Computational study indicates a dinuclear Cu-catalyzed spin-crossover-involved mechanism explains the aldehyde formation. Meanwhile, α-mono(hydroxy)- acetophenone int1 was found to be the real active intermediate for the formation of benzaldehyde pro1 from acetophenone sub1. sub1 transforms into int1 via oxygen activation and ratedetermining Cα−H activation. The resulting dinuclear Cu complex regenerates the active Cu(I) complex through spin-crossoverinvolved disproportionation and retro oxygen activation. int1 further generates pro1 via oxygen activation, O−H activation, iodide atom transfer, 1,2-H shift, ligand rotation, spin crossover, and nucleophilic substitution. By comparison, the previously proposed reaction route
2024-04-23
45. Theoretical study on the intramolecular oxyamination involved in Rh(III)-catalyzed cyclization  of unsaturated alkoxyamines
45. Theoretical study on the intramolecular oxyamination involved in Rh(III)-catalyzed cyclization of unsaturated alkoxyamines
The unexpected oxyamination reaction of O, u-unsaturated alkoxyamines was found experimentally. The mechanistic issues were studied by DFT calculations. It is suggested that the reaction undergoes [3 þ 2] cyclic addition, OeN bond cleavage, CeN reductive elimination, and the RheN unit protonation, generating the product and regenerating the active catalyst. The nitrene Rh(V) species containing a RheC bond rather than a RheO bond was suggested to be involved in the reaction mechanism. Why the substrate A with X ¼ O but not X ¼ C undergoes oxyamination reaction was rationalized based on the suggested reaction mechanism.
2024-04-23
44. Theoretical study on the base-controlled selective linear or branched ortho-alkylation of azines  catalyzed by rhodium: Mechanisms and the role of base
44. Theoretical study on the base-controlled selective linear or branched ortho-alkylation of azines catalyzed by rhodium: Mechanisms and the role of base
The detailed theoretical study on the mechanism of the alkylation of 3-trifluoromethylpyridine with acrylamide in the [RhI]/dppe catalytic system is reported, with the aid of the density functional theory (DFT) calculations. It is found that the additive bases play a critical role in switching the regioselectivity. The origin of the regioselectivity involved in these reactions was probed by performing distortion-interaction analysis. For reaction A with KOPiv as the base, the outer-sphere concerted-metallative-deprotonation (CMD) pathway is calculated to be a bit more favorable kinetically compared with the oxidative addition (OA) one and the two mechanisms are competitive. The regioselectivity in this reaction is predicted to be determined by the distortion energies of the migratory insertion transition states. In contrast, for reaction B with K3PO4 as the base, the feasible pathway is the OA one, and the corresponding interaction energies for the olefin migratory insertion into Rh–H
2024-04-23
43. Catalyst-free synthesis of α-thioacrylic acids via cascade thiolation and  1,4-aryl migration of aryl alkynoates at room temperature
43. Catalyst-free synthesis of α-thioacrylic acids via cascade thiolation and 1,4-aryl migration of aryl alkynoates at room temperature
A simple and facile catalyst-free method for the construction of α-thioacrylic acids has been developed from readily-available aryl alkynoates and thiols at room temperature. Various α-thioacrylic acids could be conveniently and efficiently obtained in moderate to good yields via cascade thiolation and 1,4-aryl migration of aryl alkynoates in the absence of any catalyst and additive.
2024-04-23

最新资讯

94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07

最新资讯

94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
94. trans-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9‑BBN
A 1,1-hydroboration of alkynylgermanes with unique transGe/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne−Ge+ π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a Ge*/Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling. This work demonstrates that incorporating metalloids into classical organic reactions may offer unconventional chemical selectivity and efficient synthetic applications.
2025-05-25
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
93. Nickel/Photoredox Catalyzed Aryl-Alkyl Cross-Coupling with Alkyl Boronic Esters as Radical Precursors
Nickel/photoredox dual catalyzed cross-coupling of aryl halides with alkylboron compounds is one of the effective methodologies for the construction of C(sp2) C(sp3) bonds. Although elegant results have been achieved by using alkyl trifluoroborates as alkyl radical precursors, the generation of alkyl radicals from readily available alkyl boronic esters is still limited due to their high oxidation potential. We disclosed here that activation of alkyl boronic esters by MeOLi is highly efficient for the generation of alkyl radicals under photocatalysis conditions. The reaction featured with a wide substrate scope, high functional group tolerance, and late-stage modification of bioactive substances. In addition, the method was also successfully extended to alkyl boronic acids. Experimental and computational mechanistic studies indicated that the crosscoupling likely proceeds via a Ni(I)-catalyzed pathway.
2024-12-23
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
92. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized se
2024-11-07
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
91. Direct decarboxylative C–N coupling with dioxazolones mediated by a base
The classic Curtius rearrangement provides an efficient method for converting carboxylic acids into amine derivatives but has safety concerns. Herein, we report a general and powerful method for the direct decarboxylative C–N coupling of alkyl and aryl carboxylic acids with dioxazolones in the presence of a base. A diverse array of amides, especially acylated chiral amines, can be synthesized under transition-metal-free conditions at room temperature, offering an alternative to the classic Curtius rearrangement. On the basis of mechanistic investigations, a distinctive mechanism involving multiple nucleophilic addition–eliminations, acyl transfers and a Lossen-type rearrangement is proposed for this unpredicted stereoretentive transformation.
2024-11-07
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1