最新资讯

62. Mechanism of Rh(III)-Catalyzed Alkylation of N-Pyrimidylindoline  with Cyclopropanols: A DFT Study
62. Mechanism of Rh(III)-Catalyzed Alkylation of N-Pyrimidylindoline with Cyclopropanols: A DFT Study
The reaction features combination of C–H activation and ring opening of cyclopropanol was studied with the aid of DFT calculations. With the reaction of N-pyrimidylindoline and 1-benzylcyclopropanol as an example to accomplish the alkylation, we found the order of C–H activation/ring opening is difficult to occur. Instead, the order of ring opening/C–H activation is predicted to be more reasonable, which circumvents the N→Rh bond breaking. Two catalytic cycles were suggested. The first cycle relates to the catalytic oxidation of cyclopropanol by Cu(II) to generate an intermediate product, the vinyl ketone. The mechanism mainly involves prior ring opening of cyclopropanol and β-H elimination. The second cycle relates to the product formation from the resultant intermediate product, in which the C–H activation of N-pyrimidylindoline, C– –C bond insertion of the intermediate product and protonation are included. The insights gained in this study are expected to be pertinent in other react
2024-04-23
61. Ligand-Free Iron-Catalyzed Regioselectivity-  Controlled Hydrobo-ration of Aliphatic Terminal Alkenes
61. Ligand-Free Iron-Catalyzed Regioselectivity- Controlled Hydrobo-ration of Aliphatic Terminal Alkenes
The control of regioselectivities has been recognized as the elementary issue for alkene hydroboration. Despite considerable progress, the specificity of alkene substrates or the adjustment of ligands was necessary for specific regioselectivities, which restrict the universality and practicability. Herein, we report a ligand-free iron-catalyzed regiodivergent hydroboration of aliphatic terminal alkenes that obtains both Markovnikov and anti-Markovnikov hydroboration products in high regioselectivities. Notably, solvents and bases were shown to be crucial factors influencing the regioselectivities and further studies suggested that the iron−boron alkoxide ate complex is the key intermediate that determines the unusual Markovnikov regioselectivity. Terminal alkenes with diverse structures (monosubstituted and 1,1-disubstituted, open-chain and exocyclic) underwent the transformation smoothly. The reaction does not require the addition of auxiliary ligands and it can be performed on a gram
2024-04-23
60. Mechanism and Origin of Chemoselectivity of Ru-Catalyzed Cross-Coupling of  Secondary Alcohols to β-Disubstituted Ketones
60. Mechanism and Origin of Chemoselectivity of Ru-Catalyzed Cross-Coupling of Secondary Alcohols to β-Disubstituted Ketones
Ru-catalyzed cross-coupling of secondary alcohols with only byproducts H2 and H2O provides a green synthetic strategy to prepare β-disubstituted ketones. Density functional theory (DFT) calculations were performed with the coupling of 1-phenylethanol and cyclohexanol as a model reaction to gain deeper mechanistic insights herein. The mechanistic details of the main reaction and the key steps of possible side reactions were clarified, and the obtained results are consistent with reported selectivity. Hydrogenation of α,β-unsaturated ketones and dehydrogenation of ruthenium hydride intermediate are direct chemoselectivity-determining stages. The hydrogenation via 1,4-addition generates more stable intermediates, being favored over that via 1,2-addition, and thus avoids the formation of alkene products. The conjugation and π−π stacking effects of phenyl and the weak electronic effect of alkyls explain the dominance of specific ketone products in the hydrogenation stage. Hydrogenation of k
2024-04-23
59. Visible-Light-Induced Regioselective Cross-Dehydrogenative   Coupling of 2-Isothiocyanatonaphthalenes with Amines Using Molecular Oxygen
59. Visible-Light-Induced Regioselective Cross-Dehydrogenative Coupling of 2-Isothiocyanatonaphthalenes with Amines Using Molecular Oxygen
An efficient and eco-friendly protocol for the construction of naphtho[2,1-d]thiazol-2-amines through visible-light photoredoxcatalyzed C(sp2)–H/S–H cross-dehydrogenative coupling reactions between 2-isothiocyanatonaphthalenes and amines was established. In this reaction, the new C–N and C–S bonds are formed simultaneously in a single step. This new method provides a straightforward approach for constructing valuable sulfur-containing compounds.
2024-04-23

最新资讯

90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
DFT calculations are carried out to investigate the hydroacylation mechanism based on copper-catalyzed A3- coupling tandem reaction of terminal alkynes, aldehydes and amines. The study reveals significant mechanistic differences between copper(I) and copper(II) catalysts. In the Cu(II)-catalyzed system, incorporation of a ligand is deemed necessary for facilitating reactivity, whereas no ancillary ligand is required in Cu(I) system. The ligand, through coordination with the Cu(II) center, stabilizes the key transition states and intermediates, resulting in a substantial reduction in the activation barrier. The ligand exhibits varying effect, with the order of activity being piperidine > pyridine > DMSO, correlating positively with the interaction energy between ligand and Cu complex. Additionally, the study sheds light on the pivotal roles played by the catalyst, ligand, base, and solvent DMSO in the reaction.
2024-09-14
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
Developing applicable methods to forge linkages between sp3 and sp2-hydridized carbons is of great significance in drug discovery. We show here a new, Ni-catalyzed reductive crosscoupling reaction that forms Csp3−Csp2 bonds from aryl iodides and cyclic sulfonium salts. Notably, Csp3−Csp2 bonds can be forged selectively at the iodine-bearing carbon of bromo(iodo)arenes which is usually recognized as a huge challenge under the catalytic reductive cross-coupling (CRCC) conditions. Experimental and computational mechanistic studies support LNiIAr as an active species, while the untraditional anti-Markovnikov selective alkylation of asymmetric sulfonium salts is determined by the oxidative S-substitution of sulfonium salts with LNiIAr. This protocol further expands the range of alkyl electrophiles under the CRCC conditions and provides a new strategy for the construction of Csp3−Csp2 bonds.
2024-04-22
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
An unprecedented transient promotion function (TPF) of CO2 in the electrochemical hydrogenation/deuteration of imines (especially α-iminonitriles) is reported. The TPF influence of CO2 results from the introduction of CO2 that disperses the negative charges of the imine radical anion intermediate. The resulting redistribution of electrons leads to a lower reduction potential of the CO2-substituted imine radical anion and thus facilitates the succeeding one-electron reduction. CO2 is finally released via spontaneous decarboxylation to complete the transient promotion process.
2024-04-22

最新资讯

90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
DFT calculations are carried out to investigate the hydroacylation mechanism based on copper-catalyzed A3- coupling tandem reaction of terminal alkynes, aldehydes and amines. The study reveals significant mechanistic differences between copper(I) and copper(II) catalysts. In the Cu(II)-catalyzed system, incorporation of a ligand is deemed necessary for facilitating reactivity, whereas no ancillary ligand is required in Cu(I) system. The ligand, through coordination with the Cu(II) center, stabilizes the key transition states and intermediates, resulting in a substantial reduction in the activation barrier. The ligand exhibits varying effect, with the order of activity being piperidine > pyridine > DMSO, correlating positively with the interaction energy between ligand and Cu complex. Additionally, the study sheds light on the pivotal roles played by the catalyst, ligand, base, and solvent DMSO in the reaction.
2024-09-14
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
Developing applicable methods to forge linkages between sp3 and sp2-hydridized carbons is of great significance in drug discovery. We show here a new, Ni-catalyzed reductive crosscoupling reaction that forms Csp3−Csp2 bonds from aryl iodides and cyclic sulfonium salts. Notably, Csp3−Csp2 bonds can be forged selectively at the iodine-bearing carbon of bromo(iodo)arenes which is usually recognized as a huge challenge under the catalytic reductive cross-coupling (CRCC) conditions. Experimental and computational mechanistic studies support LNiIAr as an active species, while the untraditional anti-Markovnikov selective alkylation of asymmetric sulfonium salts is determined by the oxidative S-substitution of sulfonium salts with LNiIAr. This protocol further expands the range of alkyl electrophiles under the CRCC conditions and provides a new strategy for the construction of Csp3−Csp2 bonds.
2024-04-22
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
An unprecedented transient promotion function (TPF) of CO2 in the electrochemical hydrogenation/deuteration of imines (especially α-iminonitriles) is reported. The TPF influence of CO2 results from the introduction of CO2 that disperses the negative charges of the imine radical anion intermediate. The resulting redistribution of electrons leads to a lower reduction potential of the CO2-substituted imine radical anion and thus facilitates the succeeding one-electron reduction. CO2 is finally released via spontaneous decarboxylation to complete the transient promotion process.
2024-04-22
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1