最新资讯

70. Insights into complicated Au(I)-catalyzed polycycloisomerization driven by  strain release: A DFT study
70. Insights into complicated Au(I)-catalyzed polycycloisomerization driven by strain release: A DFT study
The complicated Au(I)-catalyzed polycycloisomerization driven by strain release was explored theoretically with the aid of density functional theory calculations. Mechanistic study shows the reaction first generates an organic intermediate (a bicycle[4.2.0] diene) through Au(I)-induced yne‑ene cyclization, ring expansion and 1,2-H shift. After again yne‑ene cyclization and 1,2-alkyl shift from the LAu-coordinated bicycle[4.2.0] diene, the reaction was found to undergo 1,2-AuL shift rather than NTf2-assisted deprotonation to finally furnish the product. Formation of the organic intermediate was indicated to be rate-determinant. Based on the aforementioned ratedeterminant process, the influence of substituents on product yields was reasonably rationalized. In addition, a catalytic process seperation was predicted to be involved. The approach provided in this work to identify a process seperation or a non-process seperation would be extended to other one-pot catalytic tandem reactions.
2024-04-23
69. Palladium-Catalyzed Regioselective B(3,4)–H Acyloxylation of o-Carboranes
69. Palladium-Catalyzed Regioselective B(3,4)–H Acyloxylation of o-Carboranes
We disclose herein an efficient regioselective B(3,4)−H activation via a ligand strategy, affording B(3)- monoacyloxylated and B(3,4)-diacyloxylated o-carboranes. The identification of amino acid and phosphoric acid ligands is crucial for the success of B(3)-mono- and B(3,4)-diacyloxylation, respectively. This ligand approach is compatible with a broad range of carboxylic acids. The functionalization of complex drug molecules is demonstrated. Other acyloxyl sources, including sodium benzoate, benzoic anhydride, and iodobenzene diacetate, are also tolerated.
2024-04-23
68. Regioselective Synthesis of Tetrasubstituted Benzenes via  Co-Catalyzed Cycloaddition of Alkynyl Ketones and 2-Acetylpyridines
68. Regioselective Synthesis of Tetrasubstituted Benzenes via Co-Catalyzed Cycloaddition of Alkynyl Ketones and 2-Acetylpyridines
A Co(II)-catalyzed cycloaddition reaction of alkynyl ketones and 2-acetylpyridines using 2,2′-bipyridine as the ligand has been developed. These reactions have been realized through Co-catalyzed reductive coupling of two molecules of 2-acetylpyridine followed by regioselective insertion of the alkynone. It is the first example of regioselective cyclotrimerization of one molecule of alkyne and two molecules of monoketone to polysubstituted benzene derivatives in good to excellent yields. A mechanism involving the formation of a cobaltacyclopentane via homocoupling of 2-acetylpyridines is proposed, and it is supported by the DFT calculations.
2024-04-23
67. Double-Regiodetermining-Stages Mechanistic Model Explaining the  Regioselectivity of Pd-Catalyzed Hydroaminocarbonylation of Alkenes with Carbon Monoxide and Ammonium Chloride
67. Double-Regiodetermining-Stages Mechanistic Model Explaining the Regioselectivity of Pd-Catalyzed Hydroaminocarbonylation of Alkenes with Carbon Monoxide and Ammonium Chloride
Pd-catalyzed hydroaminocarbonylation (HAC) of alkenes with CO and NH4Cl enables atom-economic and regiodivergent synthesis of primary amides, but the origin of regioselectivity was incorrectly interpreted in previous computational studies. A density functional theory study was performed herein to investigate the mechanism. Different from the previous proposals, both alkene insertion and aminolysis were found to be potential regioselectivity-determining stages. In the alkene insertion stage, 2,1-insertion is generally faster than 1,2-insertion irrespective of neutral or cationic pathways for both P(tBu)3 and xantphos. Such selectivity results from the unconventional proton-like hydrogen of the Pd−H bond in alkene insertion transition states. For less bulky alkenes, aminolysis with P(tBu)3 shows low selectivity, while linear selectivity dominates in this stage with xantphos due to a stronger repulsion between xantphos and branched acyl ligands. It was further revealed that the less-menti
2024-04-23

最新资讯

90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
DFT calculations are carried out to investigate the hydroacylation mechanism based on copper-catalyzed A3- coupling tandem reaction of terminal alkynes, aldehydes and amines. The study reveals significant mechanistic differences between copper(I) and copper(II) catalysts. In the Cu(II)-catalyzed system, incorporation of a ligand is deemed necessary for facilitating reactivity, whereas no ancillary ligand is required in Cu(I) system. The ligand, through coordination with the Cu(II) center, stabilizes the key transition states and intermediates, resulting in a substantial reduction in the activation barrier. The ligand exhibits varying effect, with the order of activity being piperidine > pyridine > DMSO, correlating positively with the interaction energy between ligand and Cu complex. Additionally, the study sheds light on the pivotal roles played by the catalyst, ligand, base, and solvent DMSO in the reaction.
2024-09-14
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
Developing applicable methods to forge linkages between sp3 and sp2-hydridized carbons is of great significance in drug discovery. We show here a new, Ni-catalyzed reductive crosscoupling reaction that forms Csp3−Csp2 bonds from aryl iodides and cyclic sulfonium salts. Notably, Csp3−Csp2 bonds can be forged selectively at the iodine-bearing carbon of bromo(iodo)arenes which is usually recognized as a huge challenge under the catalytic reductive cross-coupling (CRCC) conditions. Experimental and computational mechanistic studies support LNiIAr as an active species, while the untraditional anti-Markovnikov selective alkylation of asymmetric sulfonium salts is determined by the oxidative S-substitution of sulfonium salts with LNiIAr. This protocol further expands the range of alkyl electrophiles under the CRCC conditions and provides a new strategy for the construction of Csp3−Csp2 bonds.
2024-04-22
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
An unprecedented transient promotion function (TPF) of CO2 in the electrochemical hydrogenation/deuteration of imines (especially α-iminonitriles) is reported. The TPF influence of CO2 results from the introduction of CO2 that disperses the negative charges of the imine radical anion intermediate. The resulting redistribution of electrons leads to a lower reduction potential of the CO2-substituted imine radical anion and thus facilitates the succeeding one-electron reduction. CO2 is finally released via spontaneous decarboxylation to complete the transient promotion process.
2024-04-22

最新资讯

90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
90. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thio-esters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C-(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O−O bond of anionic flavin-C(4a)
2024-09-14
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
89. Differences in mechanisms between divalent and univalent copper complexes-catalyzed hydroacylation of terminal alkyne with aldehyde and amine
DFT calculations are carried out to investigate the hydroacylation mechanism based on copper-catalyzed A3- coupling tandem reaction of terminal alkynes, aldehydes and amines. The study reveals significant mechanistic differences between copper(I) and copper(II) catalysts. In the Cu(II)-catalyzed system, incorporation of a ligand is deemed necessary for facilitating reactivity, whereas no ancillary ligand is required in Cu(I) system. The ligand, through coordination with the Cu(II) center, stabilizes the key transition states and intermediates, resulting in a substantial reduction in the activation barrier. The ligand exhibits varying effect, with the order of activity being piperidine > pyridine > DMSO, correlating positively with the interaction energy between ligand and Cu complex. Additionally, the study sheds light on the pivotal roles played by the catalyst, ligand, base, and solvent DMSO in the reaction.
2024-09-14
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
88. Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis
Developing applicable methods to forge linkages between sp3 and sp2-hydridized carbons is of great significance in drug discovery. We show here a new, Ni-catalyzed reductive crosscoupling reaction that forms Csp3−Csp2 bonds from aryl iodides and cyclic sulfonium salts. Notably, Csp3−Csp2 bonds can be forged selectively at the iodine-bearing carbon of bromo(iodo)arenes which is usually recognized as a huge challenge under the catalytic reductive cross-coupling (CRCC) conditions. Experimental and computational mechanistic studies support LNiIAr as an active species, while the untraditional anti-Markovnikov selective alkylation of asymmetric sulfonium salts is determined by the oxidative S-substitution of sulfonium salts with LNiIAr. This protocol further expands the range of alkyl electrophiles under the CRCC conditions and provides a new strategy for the construction of Csp3−Csp2 bonds.
2024-04-22
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
87. CO2 Transient Promotion Function Enabled the Selective Electrochemical Transformation of Imines
An unprecedented transient promotion function (TPF) of CO2 in the electrochemical hydrogenation/deuteration of imines (especially α-iminonitriles) is reported. The TPF influence of CO2 results from the introduction of CO2 that disperses the negative charges of the imine radical anion intermediate. The resulting redistribution of electrons leads to a lower reduction potential of the CO2-substituted imine radical anion and thus facilitates the succeeding one-electron reduction. CO2 is finally released via spontaneous decarboxylation to complete the transient promotion process.
2024-04-22
本站使用百度智能门户搭建 管理登录
鲁ICP备18034280号-1